\(\int (b \sec (c+d x))^{3/2} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [47]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 169 \[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {6 b^2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {6 b C \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b d} \]

[Out]

2/3*B*(b*sec(d*x+c))^(3/2)*sin(d*x+c)/d+2/5*C*(b*sec(d*x+c))^(5/2)*sin(d*x+c)/b/d-6/5*b^2*C*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)+6/
5*b*C*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d+2/3*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(
1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {4132, 3853, 3856, 2720, 12, 16, 2719} \[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {6 b^2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}+\frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 C \sin (c+d x) (b \sec (c+d x))^{5/2}}{5 b d}+\frac {6 b C \sin (c+d x) \sqrt {b \sec (c+d x)}}{5 d} \]

[In]

Int[(b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-6*b^2*C*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b*B*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*d) + (6*b*C*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*
B*(b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d) + (2*C*(b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(5*b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int (b \sec (c+d x))^{5/2} \, dx}{b}+\int C \sec ^2(c+d x) (b \sec (c+d x))^{3/2} \, dx \\ & = \frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {1}{3} (b B) \int \sqrt {b \sec (c+d x)} \, dx+C \int \sec ^2(c+d x) (b \sec (c+d x))^{3/2} \, dx \\ & = \frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {C \int (b \sec (c+d x))^{7/2} \, dx}{b^2}+\frac {1}{3} \left (b B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b d}+\frac {1}{5} (3 C) \int (b \sec (c+d x))^{3/2} \, dx \\ & = \frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {6 b C \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b d}-\frac {1}{5} \left (3 b^2 C\right ) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx \\ & = \frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {6 b C \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b d}-\frac {\left (3 b^2 C\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \\ & = -\frac {6 b^2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {6 b C \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{5/2} \sin (c+d x)}{5 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.82 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.60 \[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {(b \sec (c+d x))^{5/2} \left (-36 C \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 B \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+21 C \sin (c+d x)+10 B \sin (2 (c+d x))+9 C \sin (3 (c+d x))\right )}{30 b d} \]

[In]

Integrate[(b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((b*Sec[c + d*x])^(5/2)*(-36*C*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 20*B*Cos[c + d*x]^(5/2)*Elliptic
F[(c + d*x)/2, 2] + 21*C*Sin[c + d*x] + 10*B*Sin[2*(c + d*x)] + 9*C*Sin[3*(c + d*x)]))/(30*b*d)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.92 (sec) , antiderivative size = 555, normalized size of antiderivative = 3.28

method result size
parts \(\frac {2 B \sqrt {b \sec \left (d x +c \right )}\, b \left (-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+\tan \left (d x +c \right )\right )}{3 d}+\frac {2 C \sqrt {b \sec \left (d x +c \right )}\, b \left (3 i \operatorname {EllipticE}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}-3 i \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+6 i \operatorname {EllipticE}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-6 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \cos \left (d x +c \right )+3 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right )-3 i \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+3 \sin \left (d x +c \right )+\tan \left (d x +c \right )+\sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right )}\) \(555\)
default \(-\frac {2 b \sqrt {b \sec \left (d x +c \right )}\, \left (5 i B \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}-9 i C \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+9 i C \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+10 i B \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-18 i C \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+18 i C \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+5 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-9 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+9 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-5 B \sin \left (d x +c \right )-9 C \sin \left (d x +c \right )-5 B \tan \left (d x +c \right )-3 C \tan \left (d x +c \right )-3 C \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(625\)

[In]

int((b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

2/3*B/d*(b*sec(d*x+c))^(1/2)*b*(-I*EllipticF(I*(-cot(d*x+c)+csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-
cot(d*x+c)+csc(d*x+c)),I)+tan(d*x+c))+2/5*C/d*(b*sec(d*x+c))^(1/2)*b/(cos(d*x+c)+1)*(3*I*(1/(cos(d*x+c)+1))^(1
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(cot(d*x+c)-csc(d*x+c)),I)*cos(d*x+c)^2-3*I*(1/(cos(d*x+c)+1
))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cot(d*x+c)-csc(d*x+c)),I)*cos(d*x+c)^2+6*I*(1/(cos(d*x
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(cot(d*x+c)-csc(d*x+c)),I)*cos(d*x+c)-6*I*(1/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cot(d*x+c)-csc(d*x+c)),I)*cos(d*x+c)+3*I*(1/(c
os(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(cot(d*x+c)-csc(d*x+c)),I)-3*I*EllipticF(I*(
cot(d*x+c)-csc(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+3*sin(d*x+c)+tan(d*x+c)+s
ec(d*x+c)*tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.22 \[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {-5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} C b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} C b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, C b \cos \left (d x + c\right )^{2} + 5 \, B b \cos \left (d x + c\right ) + 3 \, C b\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*B*b^(3/2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sq
rt(2)*B*b^(3/2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*C*b^(3/
2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 9*I*sqrt
(2)*C*b^(3/2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)))
 + 2*(9*C*b*cos(d*x + c)^2 + 5*B*b*cos(d*x + c) + 3*C*b)*sqrt(b/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

Sympy [F]

\[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

[In]

integrate((b*sec(d*x+c))**(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((b*sec(c + d*x))**(3/2)*(B + C*sec(c + d*x))*sec(c + d*x), x)

Maxima [F]

\[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate((b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c))^(3/2), x)

Giac [F]

\[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate((b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c))^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int (b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(3/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)*(b/cos(c + d*x))^(3/2), x)